mirror of
https://github.com/raphaeIl/Novaria.git
synced 2025-12-16 16:34:44 +01:00
fix dh (by plagiarism), refactor pcapparser
This commit is contained in:
218
Novaria.Common/Mono/Mono.Math.Prime/PrimalityTests.cs
Normal file
218
Novaria.Common/Mono/Mono.Math.Prime/PrimalityTests.cs
Normal file
@@ -0,0 +1,218 @@
|
||||
//
|
||||
// Mono.Math.Prime.PrimalityTests.cs - Test for primality
|
||||
//
|
||||
// Authors:
|
||||
// Ben Maurer
|
||||
//
|
||||
// Copyright (c) 2003 Ben Maurer. All rights reserved
|
||||
//
|
||||
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining
|
||||
// a copy of this software and associated documentation files (the
|
||||
// "Software"), to deal in the Software without restriction, including
|
||||
// without limitation the rights to use, copy, modify, merge, publish,
|
||||
// distribute, sublicense, and/or sell copies of the Software, and to
|
||||
// permit persons to whom the Software is furnished to do so, subject to
|
||||
// the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be
|
||||
// included in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
//
|
||||
|
||||
using System;
|
||||
|
||||
namespace Mono.Math.Prime {
|
||||
|
||||
#if INSIDE_CORLIB
|
||||
internal
|
||||
#else
|
||||
public
|
||||
#endif
|
||||
delegate bool PrimalityTest (BigInteger bi, ConfidenceFactor confidence);
|
||||
|
||||
#if INSIDE_CORLIB
|
||||
internal
|
||||
#else
|
||||
public
|
||||
#endif
|
||||
sealed class PrimalityTests {
|
||||
|
||||
private PrimalityTests ()
|
||||
{
|
||||
}
|
||||
|
||||
#region SPP Test
|
||||
|
||||
private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence)
|
||||
{
|
||||
int bc = bi.BitCount();
|
||||
|
||||
int Rounds;
|
||||
|
||||
// Data from HAC, 4.49
|
||||
if (bc <= 100 ) Rounds = 27;
|
||||
else if (bc <= 150 ) Rounds = 18;
|
||||
else if (bc <= 200 ) Rounds = 15;
|
||||
else if (bc <= 250 ) Rounds = 12;
|
||||
else if (bc <= 300 ) Rounds = 9;
|
||||
else if (bc <= 350 ) Rounds = 8;
|
||||
else if (bc <= 400 ) Rounds = 7;
|
||||
else if (bc <= 500 ) Rounds = 6;
|
||||
else if (bc <= 600 ) Rounds = 5;
|
||||
else if (bc <= 800 ) Rounds = 4;
|
||||
else if (bc <= 1250) Rounds = 3;
|
||||
else Rounds = 2;
|
||||
|
||||
switch (confidence) {
|
||||
case ConfidenceFactor.ExtraLow:
|
||||
Rounds >>= 2;
|
||||
return Rounds != 0 ? Rounds : 1;
|
||||
case ConfidenceFactor.Low:
|
||||
Rounds >>= 1;
|
||||
return Rounds != 0 ? Rounds : 1;
|
||||
case ConfidenceFactor.Medium:
|
||||
return Rounds;
|
||||
case ConfidenceFactor.High:
|
||||
return Rounds << 1;
|
||||
case ConfidenceFactor.ExtraHigh:
|
||||
return Rounds << 2;
|
||||
case ConfidenceFactor.Provable:
|
||||
throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable");
|
||||
default:
|
||||
throw new ArgumentOutOfRangeException ("confidence");
|
||||
}
|
||||
}
|
||||
|
||||
public static bool Test (BigInteger n, ConfidenceFactor confidence)
|
||||
{
|
||||
// Rabin-Miller fails with smaller primes (at least with our BigInteger code)
|
||||
if (n.BitCount () < 33)
|
||||
return SmallPrimeSppTest (n, confidence);
|
||||
else
|
||||
return RabinMillerTest (n, confidence);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Probabilistic prime test based on Rabin-Miller's test
|
||||
/// </summary>
|
||||
/// <param name="n" type="BigInteger.BigInteger">
|
||||
/// <para>
|
||||
/// The number to test.
|
||||
/// </para>
|
||||
/// </param>
|
||||
/// <param name="confidence" type="int">
|
||||
/// <para>
|
||||
/// The number of chosen bases. The test has at least a
|
||||
/// 1/4^confidence chance of falsely returning True.
|
||||
/// </para>
|
||||
/// </param>
|
||||
/// <returns>
|
||||
/// <para>
|
||||
/// True if "this" is a strong pseudoprime to randomly chosen bases.
|
||||
/// </para>
|
||||
/// <para>
|
||||
/// False if "this" is definitely NOT prime.
|
||||
/// </para>
|
||||
/// </returns>
|
||||
public static bool RabinMillerTest (BigInteger n, ConfidenceFactor confidence)
|
||||
{
|
||||
int bits = n.BitCount ();
|
||||
int t = GetSPPRounds (bits, confidence);
|
||||
|
||||
// n - 1 == 2^s * r, r is odd
|
||||
BigInteger n_minus_1 = n - 1;
|
||||
int s = n_minus_1.LowestSetBit ();
|
||||
BigInteger r = n_minus_1 >> s;
|
||||
|
||||
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (n);
|
||||
|
||||
// Applying optimization from HAC section 4.50 (base == 2)
|
||||
// not a really random base but an interesting (and speedy) one
|
||||
BigInteger y = null;
|
||||
// FIXME - optimization disable for small primes due to bug #81857
|
||||
if (n.BitCount () > 100)
|
||||
y = mr.Pow (2, r);
|
||||
|
||||
// still here ? start at round 1 (round 0 was a == 2)
|
||||
for (int round = 0; round < t; round++) {
|
||||
|
||||
if ((round > 0) || (y == null)) {
|
||||
BigInteger a = null;
|
||||
|
||||
// check for 2 <= a <= n - 2
|
||||
// ...but we already did a == 2 previously as an optimization
|
||||
do {
|
||||
a = BigInteger.GenerateRandom (bits);
|
||||
} while ((a <= 2) && (a >= n_minus_1));
|
||||
|
||||
y = mr.Pow (a, r);
|
||||
}
|
||||
|
||||
if (y == 1)
|
||||
continue;
|
||||
|
||||
for (int j = 0; ((j < s) && (y != n_minus_1)); j++) {
|
||||
|
||||
y = mr.Pow (y, 2);
|
||||
if (y == 1)
|
||||
return false;
|
||||
}
|
||||
|
||||
if (y != n_minus_1)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
public static bool SmallPrimeSppTest (BigInteger bi, ConfidenceFactor confidence)
|
||||
{
|
||||
int Rounds = GetSPPRounds (bi, confidence);
|
||||
|
||||
// calculate values of s and t
|
||||
BigInteger p_sub1 = bi - 1;
|
||||
int s = p_sub1.LowestSetBit ();
|
||||
|
||||
BigInteger t = p_sub1 >> s;
|
||||
|
||||
|
||||
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
|
||||
|
||||
for (int round = 0; round < Rounds; round++) {
|
||||
|
||||
BigInteger b = mr.Pow (BigInteger.smallPrimes [round], t);
|
||||
|
||||
if (b == 1) continue; // a^t mod p = 1
|
||||
|
||||
bool result = false;
|
||||
for (int j = 0; j < s; j++) {
|
||||
|
||||
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
|
||||
result = true;
|
||||
break;
|
||||
}
|
||||
|
||||
b = (b * b) % bi;
|
||||
}
|
||||
|
||||
if (result == false)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
// TODO: Implement the Lucus test
|
||||
// TODO: Implement other new primality tests
|
||||
// TODO: Implement primality proving
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user