mirror of
https://github.com/raphaeIl/Novaria.git
synced 2025-12-13 23:14:53 +01:00
fix dh (by plagiarism), refactor pcapparser
This commit is contained in:
@@ -0,0 +1,66 @@
|
||||
//
|
||||
// DHKeyGeneration.cs: Defines the different key generation methods.
|
||||
//
|
||||
// Author:
|
||||
// Pieter Philippaerts (Pieter@mentalis.org)
|
||||
//
|
||||
// (C) 2003 The Mentalis.org Team (http://www.mentalis.org/)
|
||||
//
|
||||
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining
|
||||
// a copy of this software and associated documentation files (the
|
||||
// "Software"), to deal in the Software without restriction, including
|
||||
// without limitation the rights to use, copy, modify, merge, publish,
|
||||
// distribute, sublicense, and/or sell copies of the Software, and to
|
||||
// permit persons to whom the Software is furnished to do so, subject to
|
||||
// the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be
|
||||
// included in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
//
|
||||
|
||||
using System;
|
||||
|
||||
namespace Mono.Security.Cryptography {
|
||||
/// <summary>
|
||||
/// Defines the different Diffie-Hellman key generation methods.
|
||||
/// </summary>
|
||||
public enum DHKeyGeneration {
|
||||
/// <summary>
|
||||
/// [TODO] you first randomly select a prime Q of size 160 bits, then choose P randomly among numbers like
|
||||
/// Q*R+1 with R random. Then you go along with finding a generator G which has order exactly Q. The private
|
||||
/// key X is then a number modulo Q.
|
||||
/// [FIPS 186-2-Change1 -- http://csrc.nist.gov/publications/fips/]
|
||||
/// </summary>
|
||||
// see RFC2631 [http://www.faqs.org/rfcs/rfc2631.html]
|
||||
//DSA,
|
||||
/// <summary>
|
||||
/// Returns dynamically generated values for P and G. Unlike the Sophie Germain or DSA key generation methods,
|
||||
/// this method does not ensure that the selected prime offers an adequate security level.
|
||||
/// </summary>
|
||||
Random,
|
||||
/// <summary>
|
||||
/// Returns dynamically generated values for P and G. P is a Sophie Germain prime, which has some interesting
|
||||
/// security features when used with Diffie Hellman.
|
||||
/// </summary>
|
||||
//SophieGermain,
|
||||
/// <summary>
|
||||
/// Returns values for P and G that are hard coded in this library. Contrary to what your intuition may tell you,
|
||||
/// using these hard coded values is perfectly safe.
|
||||
/// The values of the P and G parameters are taken from 'The OAKLEY Key Determination Protocol' [RFC2412].
|
||||
/// This is the prefered key generation method, because it is very fast and very safe.
|
||||
/// Because this method uses fixed values for the P and G parameters, not all bit sizes are supported.
|
||||
/// The current implementation supports bit sizes of 768, 1024 and 1536.
|
||||
/// </summary>
|
||||
Static
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user